PPARG in Human Adipogenesis: Differential Contribution of Canonical Transcripts and Dominant Negative Isoforms
نویسندگان
چکیده
The nuclear receptor PPAR γ is a key regulator of adipogenesis, and alterations of its function are associated with different pathological processes related to metabolic syndrome. We recently identified two PPARG transcripts encoding dominant negative PPAR γ isoforms. The existence of different PPARG variants suggests that alternative splicing is crucial to modulate PPAR γ function, underlying some underestimated aspects of its regulation. Here we investigate PPARG expression in different tissues and cells affected in metabolic syndrome and, in particular, during adipocyte differentiation of human mesenchymal stem cells. We defined the transcript-specific expression pattern of PPARG variants encoding both canonical and dominant negative isoforms and identified a novel PPARG transcript, γ 1ORF4. Our analysis indicated that, during adipogenesis, the transcription of alternative PPARG variants is regulated in a time-specific manner through differential usage of distinct promoters. In addition, our analysis describes-for the first time-the differential contribution of three ORF4 variants to this process, suggesting a still unexplored role for these dominant negative isoforms during adipogenesis. Therefore, our results highlight crucial aspects of PPARG regulation, suggesting the need of further investigation to rule out the differential impact of all PPARG transcripts in both physiologic and pathologic conditions, such as metabolism-related disorders.
منابع مشابه
Editor’s Highlight: Screening ToxCast Prioritized Chemicals for PPARG Function in a Human Adipose-Derived Stem Cell Model of Adipogenesis
The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the fetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the hum...
متن کاملDifferential Regulation of Peroxisome Proliferator Activated Receptor g1 (PPARg1) and PPARg2 Messenger RNA Expression in the Early Stages of Adipogenesis
Adipocyte differentiation is driven by the expression and activation of three transcription factor families: the differentially expressed CAAT/enhancer binding proteins (C/EBPs) a, b, and d; the helix-loop-helix adipocyte differentiation and determination factor-1; and peroxisome proliferator activated receptor g (PPARg), expressed as two isoforms, PPARg1 and the adipocyte-specific PPARg2. Over...
متن کاملI-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملO-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملPPARG: Gene Expression Regulation and Next-Generation Sequencing for Unsolved Issues
Peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most extensively studied ligand-inducible transcription factors (TFs), able to modulate its transcriptional activity through conformational changes. It is of particular interest because of its pleiotropic functions: it plays a crucial role in the expression of key genes involved in adipogenesis, lipid and glucid metabolism, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014